Development of an Allogeneic FAP-CAR iNKT Cell Therapy to Modulate the Immunosuppressive Stroma and Improve Anti-tumor Immunity Against Non-Small Cell Lung Carcinoma

Shannon Boi1, Martyna Popis2, Magda Niedzielska2, Reed Masakayan1, Efrat Altman-Sharon2, Vigens Venkatraman1, Priyadarsini Iyer1, Sapana Pokharel1, Olivier Le Tonque1, Justin Keith1, Barbara Kalinowska2, Bishnu Joshi1, Rachel Smith1, Moira Pinzan Rossi2, Deborah Wright1, Paul Ibbett1, Olga Ignatovich2, Dhan Chand1, Eleni Chantzoura1, Xavier Michellet1, and Marc van Dijk1,2

1MINK Therapeutics, Lexington, MA, USA; 2MINK Therapeutics, Cambridge, UK; 3Ageron, Cambridge, UK; 4Ageron, Lexington, MA, USA

Background
- Lung cancer is the leading cause of cancer-related death in the United States, with non-small cell lung cancer (NSCLC) comprising a majority of cases.
- CAR T cell therapies have demonstrated unprecedented responses in hematologic malignancies. This is in part due to the ability of the CAR T cell to recognize antigen in the absence of MHC presentation and quickly respond. Moreover, recent advances have enhanced the ability of these cells for cytolytic capacity and improved persistence.
- Current limitations facing CAR-based cellular therapies in solid tumors:
 1. Insufficient infiltration of CAR-expressing cells into the tumor microenvironment (TME).
 2. Reduced cytolysis long-term against the tumor.
 3. Presence of the immunosuppressive TME which impedes endogenous anti-tumor responses and long-term tumor control.

INKT cells have the unique capacity to:
- Directly kill tumor cells by recognition of lipid tumor antigens and stress ligands.
- Reestablish the TME through IFNγ secretion, activating dendritic cells, inhibiting/eliminating immunosuppressive myeloid cells, and enhancing T cell/MiNK cell function.
- Naturally home to tissues such as lung and liver (among others).

Can the inherent functionality of INKT cells be leveraged against solid tumors?

Cancer-associated fibroblasts (CAFs):
- Contribute to tumor progression by providing physical support to tumor cells, enhancing tumor cell proliferation and angiogenesis, and promoting endogenous anti-tumor responses.
- Constitute an important part of the TME inSolid tumors such as NSCLC.

A CAR of MINK express fibroblast activation protein (FAP) and FAP-expressing CAFs play a central role in the establishment and maintenance of the immunosuppressive TME through several mechanisms.

FAP+ CAFs represent an attractive therapeutic target for solid tumors such as NSCLC. This approach is further enhanced by combining FAP-targeting with the intrinsic anti-tumor capabilities of INKT cells.

Results

Figure 1. MINK-215 immune cells exhibit antigen-specific cytotoxicity against FAP-expressing tumor cells in vitro. MINK-215 cells kill FAP-expressing tumor cells in vitro (A) or in a mouse orthotopic tumor model (B).

Figure 2. MINK-215 CAR T cells enhance iNKT cell recruitment and T cell activation in the tumor microenvironment. In vivo treatment with MINK-215 CAR T cells results in the significant infiltration of iNKT and T cells into tumor (A), resulting in improved tumor control (B).

Figure 3. MINK-215 CAR T cells increase cytokine capacity of peripheral blood T cells in vivo. MINK-215 CAR T cells are administered, and cytokine release is assessed using anti-IFNγ/FireDyex1 (IFNγ) T cells against A549 FAP-expressing tumor cells in vivo (A) or in an orthotopic tumor model (B).

Figure 4. MINK-215 CAR T cells enhance iNKT cell infiltration and T cell activation in the tumor microenvironment. In vivo treatment with MINK-215 CAR T cells results in significant infiltration of iNKT and T cells into tumor (A, B), resulting in improved tumor control (C).

Figure 5. MINK-215 CAR T cells enhance cytokine capacity of peripheral blood T cells in vivo. MINK-215 CAR T cells are administered, and cytokine release is assessed using anti-IFNγ/FireDyex1 (IFNγ) T cells against A549 FAP-expressing tumor cells in vivo (A) or in an orthotopic tumor model (B).

Figure 6. MINK-215 CAR T cells enhance iNKT cell infiltration and T cell activation in the tumor microenvironment. In vivo treatment with MINK-215 CAR T cells results in significant infiltration of iNKT and T cells into tumor (A, B), resulting in improved tumor control (C).

Figure 7. MINK-215 CAR T cells enhance cytokine capacity of peripheral blood T cells in vivo. MINK-215 CAR T cells are administered, and cytokine release is assessed using anti-IFNγ/FireDyex1 (IFNγ) T cells against A549 FAP-expressing tumor cells in vivo (A) or in an orthotopic tumor model (B).

Figure 8. MINK-215 CAR T cells enhance iNKT cell infiltration and T cell activation in the tumor microenvironment. In vivo treatment with MINK-215 CAR T cells results in significant infiltration of iNKT and T cells into tumor (A, B), resulting in improved tumor control (C).

Conclusion
- Targeting FAP is an effective therapeutic option against solid tumors, especially using INKT cells as cell therapy platform.
- Demonstrates the ability to infiltrate into tumor tissue and kill FAP-expressing tumor cells.

MINK: Therapeutics is a clinical stage biopharmaceutical company pioneering the discovery, development, and commercialization of allogeneic off-the-shelf, invariant natural killer T (iNKT) cell therapies to treat cancer and other immune-related diseases. MINK Therapeutics has advanced 3 clinical programs for biopharmaceutical product candidates (agent-870) targeting home malignancies (multiple myeloma), solid tumors in combination with PD-1 checkpoint inhibitors, and COVID-19.

Correspondence
Shannon Boi1, martyna.popis@minktherapeutics.com
Marc van Dijk1, marc.vandijk@minktherapeutics.com